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ABSTRACT
AI chatbots can offer suggestions to help humans answer questions
by reducing text entry effort and providing relevant knowledge for
unfamiliar questions. We study whether chatbot suggestions can
help people answer knowledge-demanding questions in a conver-
sation and influence response quality and efficiency. We conducted
a large-scale crowdsourcing user study and evaluated 20 hybrid
system variants and a human-only baseline. The hybrid systems
used four chatbots of varied response quality and differed in the
number of suggestions and whether to preset the message box with
top suggestions.

Experimental results show that chatbot suggestions—even using
poor-performing chatbots—have consistently improved response
efficiency. Compared with the human-only setting, hybrid systems
have reduced response time by 12%–35% and keystrokes by 33%–
60%, and users have adopted a suggestion for the final response
without any changes in 44%–68% of the cases. In contrast, crowd
workers in the human-only setting typed most of the response texts
and copied 5% of the answers from other sites.

However, we also found that chatbot suggestions did not always
help response quality. Specifically, in hybrid systems equipped
with poor-performing chatbots, users responded with lower-quality
answers than others in the human-only setting. It seems that users
would not simply ignore poor suggestions and compose responses
as they could without seeing the suggestions. Besides, presetting
the message box has improved reply efficiency without hurting
response quality. We did not find that showing more suggestions
helps or hurts response quality or efficiency consistently. Our study
reveals how and when AI chatbot suggestions can help people
answer questions in hybrid conversational systems.
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1 INTRODUCTION
Conversational agents such as chatbots are a popular way of com-
municating and providing information. Previous research has made
remarkable progress in designing chatbots [11, 16, 22, 32, 34, 41,
47, 49, 50]. However, AI chatbots cannot replace humans in many
scenarios. For example, many companies use hybrid customer ser-
vice systems combining human representatives and AI chatbots to
ensure conversation quality.

We study a human-chatbot hybrid system design where we offer
users chatbot reply suggestions. Users may directly adopt a sug-
gestion to reply or edit responses on top of a suggestion. Many
email [20, 35] and messaging [14] apps have already used such reply
suggestions. However, they focus on facilitating communication—
the reply suggestions are primarily short and functional, such as
expressing gratitude (“thank you”), confirmation (“got it”), or ac-
cepting/declining others’ proposals. Previous studies found that
such reply suggestions may improve response efficiency [20].

In contrast, we examine using chatbot suggestions to facilitate
human agents providing information. Specifically, we evaluate if
chatbot suggestions help people answer knowledge-demanding
questions during a conversation, where chatbot suggestions may
help in two ways. First, they provide essential relevant knowledge
for answering questions, especially when humans do not know or
have difficulty recalling relevant information. Second, they may
improve response efficiency because users may only need minor
edits on top of a suggestion. Previous work of text suggestion in
information seeking has only focused on supporting seekers (e.g.,
query suggestion [21] and autocompletion [27], and user request
clarification [1, 52]), while we support information providers.

We use a crowdsourcing user study to examine this matter. We
assigned crowd workers to answer knowledge-demanding ques-
tions using systems with different reply suggestion supports. We
evaluated 20 hybrid system variants. They differ regarding the
chatbots used for providing suggestions, the number of displayed
suggestions, and whether to preset users’ message input box. We
recorded the time and keystrokes needed to finish the answers
and recruited other crowd workers to assess response quality. We
compare the hybrid systems (human+AI chatbot suggestions) with
a baseline without any suggestions (a human-only system) and the
top-ranked chatbot responses (an AI-only system). The rest of the
article introduces our experiment and findings.
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2 RELATEDWORK
2.1 Text Suggestion
Our study is closely related to previous work on text suggestions
in various scenarios. Text suggestion is a widely-used technique
for assisting text entry. For example, many mobile devices offer
word suggestions while users type on on-screen keyboards [18, 30].
Search engines also provide query suggestions [21] and autocom-
pletion [27]. Besides, email [20, 35] and messaging [14] apps today
also provide short reply suggestions. The presented text sugges-
tions can be static (e.g., showing selectable quick reply suggestions
[20, 35]) or interactive (e.g., showing text completions while users
type [2, 4]). Also, the unit of suggestion can be a word [30], mul-
tiple words [2, 4], short sentences [20, 35], etc. Previous studies
found that such text suggestions may improve text entry efficiency,
although some other factors may hurt its usefulness [2, 14, 36].

Our study differs from previous work in several ways. First,
we evaluate text suggestions in question-answering conversations,
and we specifically examine how well they support the answerers.
Such tasks are more knowledge-demanding than previous ones,
and the text suggestions are also longer (about 70–150 characters)
than those in previous studies. Second, in addition to text entry
efficiency (e.g., messaging time and keystrokes), we also look into
answer quality from various dimensions.

2.2 Conversational Systems and Chatbots
We study text suggestions in conversational systems. Conversa-
tional systems are agents designed to converse with humans in
text, speech, or combined [19], e.g., dialog systems and chatbots.
Dialog systems mainly help users solve tasks such as giving direc-
tions, finding restaurants, booking flights, and controlling smart-
phone functionalities. Most dialog systems model human-agent
conversation as a sequence of acts and states [46, 51, 55] and of-
fer template-based outputs. In contrast, chatbots aim to respond
in natural language, unstructured conversations in a human-like
manner [11, 16, 22, 32, 34, 41, 47, 49, 50]. These conversations can
be chit-chats or informational, where system responses are not re-
stricted to predefined templates. Today many commercial products
such as Siri, Google Now, and Cortana combine dialog systems,
chatbots, and other functionalities (e.g., mobile web search). Also,
many other systems use conversation-like interaction, e.g., conver-
sational search [28, 29, 31, 42–44] and recommendation systems
[6, 54] and sequential question answering [16, 38].

Our hybrid systems’ scope is similar to chatbot systems. How-
ever, it differs because we use a hybrid model and let humans work
with an AI chatbot to converse with another human in question-
answering conversations. We provide users with chatbot outputs
as reply suggestions while they compose responses. Such hybrid
systems have many potential applications, e.g., improving online
customer service quality and efficiency [12, 48].

We also examine hybrid systems equipped with different chat-
bots. Current chatbots use retrieval-based or generation-based
methods trained on conversation corpora to select or synthesize
responses. Retrieval-based chatbots [16, 47, 49, 50] search for texts
that are most likely appropriate responses in existing corpora, mak-
ing the response generation task similar to sentence and paragraph-
level text retrieval problems. The effectiveness of retrieval-based

Figure 1: A screenshot of the hybrid conversational system.

approaches largely depends on whether the utterance corpora in-
clude an ideal response. This assumption is reasonable in applica-
tion scenarios where similar dialogues repeat but may not hold in
open-domain discussions. In contrast, generation-based chatbots
[11, 22, 32, 34, 41] synthesize new utterances based on response
patterns learned from the training corpora. Here we evaluate hy-
brid systems using different chatbots of varied response quality,
including retrieval-based and generation-based ones.

Evaluating chatbot response quality is challenging. On the one
hand, many existing datasets are not using natural online conversa-
tions, but online social media discourses or movie lines [5, 7, 10, 25,
33, 37, 45]. On the other hand, automatic evaluation methods for
chatbot responses mostly use impractical settings or have low con-
sistency with human judgments [23]. For example, many studies
evaluated retrieval-based chatbots by whether they can rank the ac-
tual response to the top without examining the critical assumption
of retrieval-based chatbots (the coverage and generalizability of
the response corpora to new tasks). In contrast, we use large-scale
crowdsourcing judgments to evaluate the quality of responses in
our hybrid systems.

3 EXPERIMENT
We use online crowdsourcing experiments to study hybrid conver-
sational systems with chatbot suggestions. Our primary purpose
is to compare hybrid systems with human-only and chatbot-only
baselines regarding response quality and efficiency. Also, we exam-
ine the influence of chatbot suggestion quality and two interface
design factors—the number of displayed suggestions and message
box initialization. We assign crowd workers to finish simulated
question-answering tasks using different systems and record their
responses for analysis.

3.1 Conversation Tasks
Human conversations are complex activities and may have differ-
ent intents. Here we focus on answerers in question-answering
conversations, where the task is to answer informational questions.
We have created a task pool based on the Wizard of Wikipedia
dataset [9]. We chose this dataset because the included conver-
sations are informational and knowledge-demanding but do not
require extensive domain expertise (to ensure that crowd workers



Figure 2: An example conversation task and its chatbot suggestions.

can handle). Also, this dataset is more similar to real-world conver-
sations than many others [10, 25, 45] because the messages came
from a user study’s chat log.

The task pool included 90 conversations with one, two, or three
rounds of existing messages (30 for each case). For each task, we
show participants an existing conversation, and they need to re-
spond to the most recent message. The participants only play the
role of an answerer. For example, Figure 2 shows a task with two
existing rounds, where the participant plays the role of Person 2
and responds to Person 1’s last message (a question). Our systems
do NOT further reply to the participant’s response—participants
only have one-shot interaction with the system. Such one-shot in-
teraction is similar to batch-mode online customer support, where
human agents can take over any ongoing conversation, respond
to it, and move on to the next one. We randomly sampled conver-
sations from the dataset and manually removed unqualified ones
(e.g., chit-chats or those that need domain expertise).

3.2 Hybrid Conversational Systems
Our hybrid systems show users chatbot responses for the same
conversation as suggestions to help them compose answers. Figure 1
shows a screenshot of a hybrid system with three suggestions.
Clicking on a suggestion will append its content to the message
box. Users can make further edits and select other suggestions.
Clicking on the “Send” button will finish a response (and the task).

We also examine two system design considerations. The first
one is to initiate the message box—to leave it blank or preset it
with the top-ranked suggestion. We suspect presetting the text
box may encourage users to compose responses based on chatbot
suggestions (as it requires extra effort to remove the preset content
and write from scratch). The second one is the number of displayed
suggestions. Showing more suggestions increase the chances of
providing high-quality suggestions but may cost users more effort
to read the suggestions.

3.3 Chatbot Systems
We suspect that the chatbot used for providing suggestions plays a
critical role in the success of a hybrid system. Thus, we compare
hybrid systems using different chatbots. Note that we are less inter-
ested in knowing any specific chatbot is a better choice than others.
Instead, we hope that our chatbot selections can provide diverse

samples of suggestions with varied quality and characteristics to
help draw more generalized conclusions regarding the influence of
chatbot suggestion quality on hybrid systems’ responses.
• RetBest is a retrieval-based chatbot retrievingmessages from the
Wizard of Wikipedia dataset as responses. The dataset includes
the actual responses to the conversation tasks. This ensures an
ideal response exists in the conversation corpus and stands for
the retrieval-based chatbot’s “best” possible performance.

• RetWorst, in contrast, is the retrieval-based chatbot after remov-
ing the actual responses to the selected 90 conversation tasks.
RetWorst stands for the performance of the retrieval-based chat-
bot when the conversation repository does not generalize well
to the target tasks.

• RetWiki is another retrieval-based chatbot retrieving sentences
from an external but high-quality corpus—Wikipedia. Wikipedia
is not a conversation repository but provides highly informa-
tive sentences that may provide users relevant knowledge for
answering questions.

• Gen is a generation-based chatbot that can synthesize responses
that do not exist in the training corpus. Gen provides one single
response output, while the three retrieval-based chatbots offer a
ranked list of messages.
We built the four chatbots using existing models implemented

in ParlAI [26], an open-source conversational system toolkit. The
three retrieval-based chatbots use the Retrieval Transformer Mem-
ory Network [26]. We trained the network to minimize the cross-
entropy loss on the Wizard of Wikipedia dataset, excluding the 90
conversations selected into our task pool. We use the trained model
to retrieve responses from the Wizard of Wikipedia dataset as re-
sults for RetBest. RetWorst simply removes the actual responses
of the 90 conversations from RetBest’s results. RetWiki uses the
same model to rank Wikipedia sentences. The generation-based
chatbot uses the Generative Transformer Memory Network [26].
We trained the network to minimize the negative log-likelihood of
response messages on the Wizard of Wikipedia dataset. Figure 2
shows example top results of the four chatbots.

3.4 Experimental Design
We conducted a crowdsourcing user study to compare different
systems. Our experiment used a between-subjects design.We assign



Table 1: Experimental settings (21 systems in total).

Chatbot Support Message Box
Initialization

Num. of
Suggestions

Num. of
Participants

Human (no support) - - 50
RetWiki blank/preset 1/3/5 50 × 2 × 3
RetBest blank/preset 1/3/5 50 × 2 × 3
RetWorst blank/preset 1/3/5 50 × 2 × 3

Gen blank/preset 1 50 × 2 × 1

each participant to one of the following 21 systems to finish some
conversation tasks. Table 1 summarizes the experimental settings.
• Human is a baseline system where users are only provided with a
text box to input their replies without any suggestions. However,
we did not prohibit or encourage crowd workers to acquire help
on a search engine or other external sites.

• For each of RetWiki, RetBest, and RetWorst, we examine the
hybrid system variants using the chatbot to offer top 1, 3, or 5
responses as suggestions, with or without presetting the message
box. This includes 18 systems in total (3 × 3 × 2 = 18).

• We also examine two hybrid system variants using Gen for chat-
bot suggestion, with or without presetting the message box.
We required each participant to finish an experimental session

of five minutes (excluding the time spent on instructions and a
training task at the beginning of the session). The participants com-
pleted conversation tasks randomly sampled from the pool one after
another until five minutes. We instructed participants to provide
informative responses instead of short and uninformative replies
such as “I don’t know.” We recorded the participants’ responses and
their keystrokes on the messaging interface.

For each system, we recruited 50 participants from Amazon
Mechanical Turk. We required them to have a higher than 95% HIT
approval rate and at least 1,000 approved HITs, though we did not
require them to be English native speakers (Amazon Mechanical
Turk did not provide this qualification filter). We paid each HIT (a
5-minute session) $0.25. We instructed the participants that other
human workers would assess their responses, and they needed to
finish at least five conversations with informative responses. We
instructed them that the top 10% performing HITs (by the number
of finished conversations with informative responses) will receive a
$0.25 bonus. We determined an informative response by an average
overall quality rating of at least 3.0 on a 5-point scale by three
different crowd workers. We have obtained institutional approval
for this human subjects research.

3.5 Response Quality Judgments
We recruited another group of crowd workers to assess the quality
of the collected responses (plus each chatbot’s top responses). We
showed assessors a conversation, highlighting the response to be
judged, and asked them to rate the overall quality of the response
plus its usefulness, accuracy, English fluency, human-likeness, in-
terestingness, and reasonableness. The questions are adapted from
previous studies evaluating chatbots [40, 53]:
• Overall Quality – How well would you rate the quality of the
highlighted response? Very Poor (1), Poor (2), Okay (3), Good (4),
Very Good (5).

Figure 3: Pearson’s correlation of response quality.

• Usefulness – The highlighted response provides useful informa-
tion relevant to the conversation. Strongly Disagree (1), Disagree
(2), Neutral (3), Agree (4), Strongly Agree (5).

• Accuracy – The information provided by the highlighted re-
sponse is correct and accurate. Strongly Disagree (1), Disagree (2),
Neutral (3), Agree (4), Strongly Agree (5).

• English Fluency – The highlighted response sounds like some-
one who speaks fluent and natural English. Strongly Disagree (1),
Disagree (2), Neutral (3), Agree (4), Strongly Agree (5).

• Human-likeness – I believe the highlighted response is from a
real human instead of a bot. Strongly Disagree (1), Disagree (2),
Neutral (3), Agree (4), Strongly Agree (5).

• Interestingness – The highlighted response reads interesting
to me. Strongly Disagree (1), Disagree (2), Neutral (3), Agree (4),
Strongly Agree (5).

• Reasonableness – The highlighted response is reasonable and
logical in its context. Strongly Disagree (1), Disagree (2), Neutral
(3), Agree (4), Strongly Agree (5).
Each judgment HIT included five conversations to be judged

and a verification task. The verification task shows a response
that is obviously irrelevant to the conversation and provides little
information. We rejected a HIT if the worker provided an overall
quality rating ≥ 3 for the verification task. We paid each judgment
HIT $0.2 and required the assessors to have a higher than 95%
HIT approval rate and at least 1,000 approved HITs. We collected
three assessors’ ratings for each conversation response and used
the mean values of the judgments as quality measures.

4 DATA
We have collected 1,050 experiment sessions. On average, an ex-
periment session (5 minutes) had 9.9 completed conversations. We
collected crowdsourcing judgments for user responses in all fin-
ished conversations (10,435 in total). We also collected judgments
for each chatbot’s top 5 results. These responses included many
duplicates (5,477 unique ones in total), e.g., participants adopted a
suggestion for the response without any changes.

Figure 3 shows the Pearson’s correlation of response quality
measures (all correlations are statistically significant at 𝑝 < 0.001).
Five measures (overall quality, usefulness, accuracy, interestingness,



Figure 4: Distribution of response quality, length, and the time and keystrokes for composing messages (𝑁 = 10, 435).

Table 2: Comparisons between hybrid systems using different chatbots and the human-only and chatbot-only baselines.

Human RetWiki 𝑁 = 2, 962 RetBest 𝑁 = 3, 292 RetWorst 𝑁 = 2, 650 Gen 𝑁 = 1, 131
𝑁 = 400 Chatbot Hybrid Chatbot Hybrid Chatbot Hybrid Chatbot Hybrid

Overall Quality 3.74 3.68 3.77 ↑↑↑ 3.87 3.89 2.84 3.35 ↑↑↑ 3.10 3.43 ↑↑↑
Usefulness 3.78 3.87 3.90 3.90 3.93 2.85 3.39 ↑↑↑ 3.23 3.53 ↑↑↑
Accuracy 3.87 3.99 3.99 3.94 3.96 2.95 3.46 ↑↑↑ 3.36 3.64 ↑↑↑
Interestingness 3.71 3.80 3.85 3.90 3.91 2.91 3.38 ↑↑↑ 3.20 3.48 ↑↑↑
Reasonableness 3.91 3.73 3.86 ↑↑↑ 3.81 3.88 ↑↑ 2.79 3.40 ↑↑↑ 3.17 3.51 ↑↑↑
English Fluency 4.06 3.96 4.01 4.07 4.07 3.54 3.83 ↑↑↑ 3.64 3.84 ↑↑↑
Humanlikeness 3.77 3.06 3.31 ↑↑↑ 3.67 3.69 2.92 3.39 ↑↑↑ 3.14 3.42 ↑↑↑
Time Spent on a Response (s) 31.2 - 24.4 - 21.8 - 27.6 - 20.5
Number of Keystrokes 65.7 - 27.4 - 21.4 - 39.3 - 29.6
% Response same as a suggest. - - 55.6% - 68.3% - 44.2% - 58.7%
Response Length (characters) 60.9 152.6 145.2 ↓↓↓ 99.2 102.9 78.8 78.0 73.2 75.5
↑, ↑↑, and ↑↑↑: Hybrid is significantly higher than Chatbot at 0.05, 0.01, and 0.001 level. ↓, ↓↓, and ↓↓↓: Hybrid is significantly lower than Chatbot at 0.05, 0.01, and 0.001 level.
Orange shading: Hybrid > Human statistically significant at 𝑝 < 0.05 , 0.01 , and 0.001 . Blue shading: Hybrid < Human statistically significant at 𝑝 < 0.05 , 0.01 , and 0.001 .

and reasonableness) have strong positive correlations with each
other (𝑟 > 0.79). In contrast, the other two (English fluency and
human-likeness) have moderate positive correlations with other
measures (𝑟 ranges between 0.5 and 0.7). The trends of the five
highly correlated measures are very similar. Thus, we only report
overall quality as an example of the five measures in some analyses.

Figure 4 plots the distribution of the quality measures and other
variables for the collected conversations. The response quality mea-
sures all have left-skewed bell-shaped distributions. We transform
time spent and response length (the number of characters) by tak-
ing log10 (𝑥 + 1) where 𝑥 is the raw value. The transformed values
also have bell-shaped distributions. The skewness and kurtosis of
these five variables are within the acceptable range for data anal-
ysis requiring normal distributions, e.g., (−2, 2) for skewness and
(−7, 7) for kurtosis [3, 13]. The number of keystrokes is still far
from a normal distribution after transformation (although skew-
ness and kurtosis are within the suggested range). Thus, we use
non-parametric tests for keystrokes.

5 RESULTS
We examine the collected results to discuss the following questions:
• RQ1 (Section 5.1)—Do hybrid systems help users better answer
questions compared with one with no suggestions?

• RQ2 (Section 5.2)—How do hybrid systems’ responses compare
with the provided chatbot suggestions?

• RQ3 (Section 5.3)—How do characteristics of the displayed sug-
gestions influence users’ responses in hybrid systems?

• RQ4 (Section 5.4)—Should hybrid systems preset the message box
with top chatbot suggestions?

• RQ5 (Section 5.5)—How many suggestions should be provided?

5.1 Hybrid vs. Human-Only Systems
Table 2 compares the hybrid systems with human-only and chatbot-
only baselines. For the human-only baseline (Human), we report
the mean values of each measure across all conversations. For the
hybrid systems (Hybrid), we aggregate the experiment sessions
using the same chatbot (ignoring the differences in the number of
displayed suggestions and message box initialization) and report
the mean values for hybrid systems using each chatbot.

We compare the five groups (Human and Hybrid using each chat-
bot) using a one-way ANOVA with participants and tasks being
nested variables. The only exception is that we use a Kruskal–Wallis
test for the number of keystrokes due to its skewed distribution. We
test significant differences between two groups using the Bonfer-
roni correction post-hoc test. We use different shadings in Table 2
for significant differences between Hybrid and Human at different
levels. We test for significant differences using the log transforma-
tion of the time spent and response length. However, we report the
raw values for the two variables in Table 2 for better interpretability.

Experimental results show that the hybrid systems have con-
sistently improved users’ response efficiency compared with the
human-only baseline. On average, the hybrid systems have reduced
response time by 12%–35%—the differences are significant at 0.001
level between the human-only setting and any hybrid systems. Par-
ticipants using hybrid systems have also used significantly fewer—
only about 33%–60%—keystrokes for a response than others with
the human-only system. In contrast, the responses in the hybrid
systems are also significantly longer than those from the human-
only baseline. Altogether, we found that participants have used
significantly shorter time and fewer keystrokes to reply with much
longer responses in hybrid systems than the human-only baselines.



Figure 5: The distribution of keystroke/response-length ratio in different conversational systems.

We further examined why hybrid systems improve response
efficiency. The primary reason is that users directly adopted a sug-
gestion for the response—in the hybrid systems, 44.2%–68.3% of the
replies are the same as a displayed suggestion. Users did also edit
responses on top of an existing suggestion but with much lower
frequency than adopting one with no changes. Figure 5 plots the
number of keystrokes spent compared with the response’s length
(keystroke/response-length ratio). This ratiomeasures the efficiency
of composing a message. For example, if a user types all the char-
acters of a response text manually without making any mistakes,
the ratio would be 1. If a user types manually but changes back and
forth, the ratio would be higher than 1. The ratio would be close
to 0 if the user directly adopts a suggestion for the response. As
Figure 5 (the right two charts) shows, the ratio for a small propor-
tion of responses lies between 0 and 1, indicating that users have
edited their responses on top of an existing suggestion and saved
some keystrokes. However, this happened much less frequently
than directly adopting a suggestion in our experiments.

It worths noting that the keystroke/response-length ratio is close
to 0 in about 5% of the conversations completed under the human-
only condition, although we provided no suggestions. The most
likely explanation is that users went to external websites and copied
answer texts.Wemanually verified this by searching their responses
in Google, and we did have found the source websites providing
the copied contents. This indicates that it is natural for human
agents to seek information even when their roles are to answer and
provide information to others. Our hybrid systems have automated
this process by suggesting relevant knowledge. We also suspect
that chatbot outputs’ actual “usage” should be even higher than
simply looking at the keystroke/response-length ratio—users may
get ideas from reading a suggestion’s text without clicking on it.

In contrast, the hybrid systems did not consistently help or hurt
response quality compared with the human-only baseline. The
advantages of hybrid over human-only systems seem to depend on
whether the chatbot can provide high-quality suggestions. Table 2
also reports the average quality of each chatbot’s top responses.
RetWiki and RetBest are two well-performing chatbots, and their
top responses’ quality is comparable to humans’, while RetWorst
and Gen are two poor-performing ones.

On the one hand, participants using hybrid systems with the two
well-performing chatbots did outperform the human-only baseline
in several (but not all) aspects of response quality. However, the
magnitude of the improvements only lies between 0.1 to 0.2 on a
five-point Likert scale. Besides, the hybrid systems’ responses did

not significantly improve in a fewmeasures, e.g., the RetWiki hybrid
systems’ responses are significantly less human-like than those by
the human-only baseline. On the other hand, hybrid systems using
poor-performing chatbots consistently underperformed the human-
only baseline in all quality measures. The magnitude of differences
is evident (between 0.2 to 0.5), although these hybrid systems had
still reduced response time and keystrokes significantly. It seems
that users would not simply ignore poor suggestions and respond
as they could without seeing the suggestions. Instead, they adopted
some suggestions directly even though they might write better ones
themselves.

To conclude, we found that hybrid systems with chatbot sugges-
tions can consistently reduce the time and keystrokes needed for
composing responses than the human-only baseline. The hybrid
systems may improve response quality, provided that the chatbot
provides high-quality suggestions. However, poor-performing chat-
bots’ suggestions may reduce answer quality, though still help with
response efficiency.

5.2 Hybrid vs. Chatbot-Only Systems
Table 2 also compares the hybrid systems with their correspond-
ing chatbot-only baselines. We created a set of comparable obser-
vations for the chatbot-only baselines (Chatbot) to “simulate” a
mixed-design experiment. For each session using a hybrid system,
we create a corresponding chatbot-only “session” on the same se-
quence of tasks using the chatbot’s top response as the answer. This
allows us to compare hybrid systems with chatbot baselines on pre-
cisely the same tasks. We compare hybrid and chatbot-only systems
using a two-way mixed-design ANOVA—the chatbot choice is a
between-subject factor, and hybrid vs. chatbot-only systems is a
within-subject factor. We compare each chatbot-hybrid pair using
a Bonferroni post-hoc test and report significant differences by
arrows with different directions.

The two-way tests have found significant overall differences and
improvements (main effects) of hybrid systems over chatbot-only
ones on all measures except response length. Participants’ responses
have higher quality ratings than the corresponding chatbot base-
lines in all hybrid systems, and their differences are statistically
significant in most cases. Overall, this suggests that the hybrid
systems improve the quality of responses over their chatbots’ top-
ranked suggestions. However, the magnitude of response quality
improvements varies by the chatbots used in the hybrid systems.
In those using the two poor-performing chatbots, participants have
improved response quality by 0.2 to 0.5 on a five-point Likert scale



Table 3: Multilevel regression analysis—the fixed effects of system settings and top suggestion’s characteristics.
Dependent Variables: Hybrid System Responses

Independent Variables Overall
Quality

Δ Overall
Quality

English
Fluency

Δ English
Fluency

Human-
likeness

Δ Human-
likeness

Time Spent
log10 (𝑦+1)

Response same as a
suggestion (binary)

(Intercept) 2.177 2.183 2.269 2.269 2.222 2.220 1.454 −4.447
RetWiki vs. RetBest (1=true;0=false) −0.066 −0.070 0.001 0.001 −0.113 −0.117 0.047 −1.102
RetWorst vs. RetBest (1=true;0=false) −0.115 −0.123 −0.018 −0.018 −0.014 −0.020 0.083 −1.314
Preset (1=true;0=false) 0.066 0.071 0.038 0.038 0.025 0.027 −0.078 0.742
Showing 1 suggestion (1=true;0=false) −0.006 −0.007 −0.005 −0.005 0.104 0.105 −0.060 −0.430
Showing 5 suggestions (1=true;0=false) −0.029 −0.028 −0.041 −0.041 0.005 0.006 0.004 0.266
Top Suggestion’s Overall Quality 0.362 −0.638 0.001 0.001 −0.052 −0.053 −0.034 0.424
Top Suggestion’s English Fluency 0.046 0.044 0.405 −0.595 0.009 0.011 −0.008 0.196
Top Suggestion’s Human-likeness −0.006 −0.006 0.009 0.009 0.403 −0.598 0.007 0.024
Top Suggestion’s Length: log10 (𝑥 + 1) 0.070 0.069 0.059 0.059 0.064 0.065 0.050 0.969

Orange shading: positive coefficient significant at 0.05 , 0.01 , and 0.001 level. Blue shading: negative coefficient significant at 0.05 , 0.01 , and 0.001 level.

in different measures. In contrast, most of the improvements in
systems using the two well-performing chatbots are small (< 0.1)
and sometimes not statistically significant.

To conclude, we found that the hybrid systems can consistently
enhance overall response quality than their chatbots’ top results—
not always have evident improvements, but rarely hurt on average.
This suggests there is little risk of replacing chatbots with hybrid
settings concerning response quality.

5.3 Influence of the Top Displayed Suggestion
We further examine the influence of three factors—chatbot sug-
gestions, message box initialization, and the number of displayed
suggestions—on the hybrid systems. Here we exclude the hybrid
systems using Gen because they can only display one suggestion.
The rest 18 settings (8,904 sessions in total) by RetWiki, RetBest,
and RetWorst create a 3×3×2 factorial design—chatbot (3 levels),
message box initialization (2 levels), and the number of suggestions
(3 levels). We examine the three factors using a three-way ANOVA.
Figure 6 reports the interaction between message box initialization
and the number of displayed suggestions on the hybrid systems
using the two well-performing chatbots.

Also, we suspect a chatbot choice is insufficient to characterize
its suggestions’ characteristics as the same chatbot’s suggestions
vary across different tasks. Thus, we also use regression analysis
to examine the influence of chatbot suggestions’ attributes on the
hybrid systems. Here we only focus on the top displayed suggestion.
We use multilevel regression instead of an ordinary one because
our observations are nested—multiple finished conversations’ re-
sponses (level 1) are nested within the same participant (level 2),
and multiple participants are nested within the same experiment
setting (level 3).

The level 1 independent variables include the top displayed
suggestion’s overall quality, English fluency, human-likeness, and
length. We do not include level 2 variables to characterize the par-
ticipants. The level 3 variables are the experiment setting factors.
We use two dummy variables (RetWiki and RetWorst) for chatbot
choice (RetBest is the reference category). We use two dummy vari-
ables (showing 1 or 5 suggestions) for the number of displayed
suggestions because its effects do not seem linear in Figure 6. We
use a “random slope” model to allow level 1 variables’ effects to
vary by participants (level 2) and experiment settings (level 3). The

level 3 variables have fixed slopes. Table 3 reports the fixed effects
of each independent variable on each dependent variable, and we
label statistically positive and negative effects by different colors.
The fixed effects can be interpreted similarly to the coefficients in
an ordinary regression, except that the level 1 variables’ effects have
factored out the variation by different participants and experiment
settings.

The effects of the level 1 variables in Table 3 confirmed our prior
conjecture that the top displayed suggestion has a salient influence
on response quality and composing behavior (after factoring out
the experiment setting and individual differences).

First, the top suggestion’s quality on a particular dimension
significantly and positively affects the final response’s quality on
the same dimension. For example, the model’s coefficients sug-
gest that, while other factors are equal, a 1-unit increase in the
top suggestion’s overall quality will enhance the hybrid system
response’s overall quality by 0.362. This indicates that providing
better top suggestions can directly increase response quality in
hybrid systems. This also explains why hybrid systems using well-
performing chatbots have better quality responses than those using
poor-performing bots.

Second, the top suggestion’s quality significantly but negatively
affects the quality improvement of hybrid systems’ responses over
the chatbot baselines (the dependent variables starting with Δ in Ta-
ble 3). This explains why participants’ responses in hybrid systems
using different chatbots improved over the chatbot baselines by
different magnitudes. Practically, the negative effects suggest that
users may not improve a suggestion if it is already good enough.

Third, having a top suggestion with better overall quality makes
users more prone to adopt a suggestion directly for the final re-
sponse. The last column in Table 3, “response same as a suggestion
(binary),” is a binary variable for whether the final response is the
same as a displayed suggestion. The reported effects are the raw
coefficients for the multilevel logistic regression. We found that the
top suggestion’s overall quality has a positive influence—increasing
the top suggestion’s overall quality will increase the chances of
directly adopting a suggestion for the response.

Moreover, providing top suggestions with better overall quality
also saves users’ response time—we observed a negative effect of
top suggestion’s overall quality on time spent (log transformation).
While other factors are equal, a 1-unit increase in the top sugges-
tion’s overall quality will reduce the log10 (𝑥 + 1) transformation



Figure 6: Interaction between message box initialization and the number of displayed suggestions in hybrid systems.

Main Effects: Chatbot ***, Preset (0.87), NumSug (0.69) Main Effects: Chatbot ***, Preset (0.97), NumSug (0.68)
Interaction: Chatbot:Preset ** Interaction: No significant interaction among factors.

Main Effects: Chatbot ***, Preset (0.81), NumSug (0.44) Main Effects: Chatbot (0.21), Preset ***, NumSug ***
Interaction: Chatbot:Preset *, Chatbot:NumSug **, Interaction: Chatbot:NumSug ***, Preset:NumSug ***,

Chatbot:Preset:NumSug * Chatbot:Preset:NumSug **

value of the time spent by 0.034—this is roughly to reduce the time
(more precisely, time + 1) to 10−0.034 = 92.5% of the original value.
We believe this is because users are more prone to adopt a chatbot
suggestion with no changes or minor edits when the suggestion is
good enough.

In addition to the top suggestion’s quality, we found that the
top suggestion’s length (log transformation) significantly and posi-
tively affected the time spent on a response (log transformation).
We suspect it is because longer suggestions take users longer to
read. The practical implication is that while two chatbots provide
suggestions with the same quality, a hybrid system may use the
one that gives shorter suggestions due to user efficiency concerns.
The top suggestion’s length also significantly and positively affects
the odds ratio to adopt a suggestion without changes—it requires
future study to explain why.

To conclude, providing better-quality top suggestions in hybrid
systems can improve response quality, encourage users to adopt
suggestions, and reduce response time. Also, providing longer sug-
gestions increases hybrid systems’ response time.

5.4 Whether to Preset the Message Box
We found that presetting the message box with the chatbot’s top
suggestion can significantly reduce the time spent and encourage
users to adopt a suggestion without changes. The coefficients in
Table 3 suggest that, while other factors are equal, presetting the
message box will shorten the time spent to roughly 10−0.078 = 84%
of that without presetting and increase the odds ratio of adopting a
suggestion with no changes to 𝑒0.742 = 210% of the ratio without
presetting the message box.

The influence of message box initialization on response quality
seems inconsistent across ANOVA and multilevel regression results.
ANOVA tests found no significant main effects but some significant
interactions betweenmessage box initialization and chatbot choices.
The multilevel regression suggests that presetting significantly and
positively affects responses’ overall quality and English fluency, but
the practical impacts are limited based on the coefficients’ values.
Here we believe it requires future research to confirm whether
presetting the message box affects response quality.

5.5 Number of Displayed Suggestions
Findings regarding the number of displayed suggestions are mostly
inconclusive, suggesting that we need further work to understand
its influence on hybrid systems. Figure 6 suggests that we should
not explain the effects of the number of displayed suggestions as
simply ordinal. In many cases, the trends from showing one sug-
gestion to three are inconsistent with those from showing three
to five. Besides, the ANOVA tests found some significant inter-
actions between the number of displayed suggestions and other
factors, suggesting its effects are dependent on other factors. The
multilevel regression found significant effects on responses’ English
fluency and human-likeness, but we do not interpret them further.
At least, our experimental results did not show evident benefits or
drawbacks for providing more suggestions in hybrid systems.

6 DISCUSSION AND CONCLUSION
6.1 How and Why Chatbot Suggestions Help
Our study reveals that well-designed hybrid systems can improve
both response quality and efficiency (but mainly efficiency) in
question-answering conversations because of two reasons.



First, chatbot suggestions can provide critical relevant informa-
tion for completing knowledge-demanding questions like those
we used in our experiments. Also, as Figure 5 shows, it seems
a natural need to seek information when answering knowledge-
demanding questions, even though the human agents’ role is to
provide information. Hybrid systems’ suggestions can address such
information-seeking needs.

Second, users can efficiently reuse the chatbot suggestions’ texts,
in part or whole, when composing their responses. It seems that
adopting a suggestion directly or making edits on top of it costs
users much fewer keystrokes and a shorter time than writing a
response entirely from scratch. We note that this observation holds
in all hybrid systems we evaluated, even though some used poor-
performing chatbots for suggestions.

However, the primary benefits of hybrid systems over human-
only ones lie in their efficiency. According to our results, even
the best-performing systems had only slightly improved response
quality in some but not all dimensions. In contrast, hybrid systems
had shortened response time consistently.

6.2 Hybrid System Design Suggestions
Our study provides suggestions for designing hybrid systems to
support humans in answering informational questions.

First, providing high-quality suggestions is key to the benefits of
a hybrid system. This may seem obvious, but what is striking is that
our results showed how poor-performing chatbots’ suggestions
might hurt response quality in hybrid systems. There is likely a
quality-efficiency trade-off between human-only and hybrid sys-
tems if we cannot guarantee the quality of chatbot suggestions. In a
pilot study [17], we were not able to identify this risk of hybrid sys-
tems due to the limited chatbot choice we evaluated. It is essential
to decide whether and when to suggest replies in hybrid systems.

Our study also provides insights regarding the choice of chatbots
for hybrid systems. We have found that the generation-based chat-
bot did not perform well compared with the retrieval-based ones.
However, we note that retrieval-based chatbot’s actual effective-
ness may lie between RetBest and RetWorst, and the comparison
between retrieval and generation-based approaches may differ by
datasets and models. Interestingly, RetWiki supported users rather
well, even though previous studies did not extensively explore
retrieval-based bots searching over non-conversational datasets.
We also suspect that the criteria of whether a chatbot well supports
a hybrid systemmay differ from those for responding to users alone.

Finally, our study suggests that one needs to be cautious about
how many suggestions to display in hybrid systems. As our exper-
imental results show, offering more chatbot suggestions did not
consistently improve response quality or efficiency (though not
consistently hurt either). Also, its significant interaction with other
factors suggests that the optimal number of suggestions is highly
system-dependent and may vary by other factors.

6.3 Limitations and Future Work
We also acknowledge some limitations in our study.

First and most important, we have only examined question-
answering conversations for providing information. We made this
choice due to the lack of conversational datasets of other types. The

findings may vary in other types of conversations, especially com-
municative (e.g., an agent for amusing people) and transactional
ones (e.g., online customer support helping a traveler change a
flight). Also, our users are “answerers” in these tasks, and their role
is to provide information to others. It is unclear how suggestions
affect message quality for other roles of users.

Second, we have relied on crowdsourcing response quality judg-
ments to evaluate the hybrid systems. It remains unclear how well
the collected assessments and the six quality dimensions represent
the experience of people who received these messages in a conver-
sation. For example, we did not use dimensions such as empathy
and ethics while judging the responses, although some previous
studies suggested a need to make more empathetic and ethical chat-
bots [8, 15, 24, 39, 48]. We also expect that user experience with
chatbot responses will vary a lot in conversations of various types.

Third, we used only a simple interaction design for our hybrid
systems, e.g., we only provided static whole-message suggestions
and did not interactively suggest while users type in the message
box. It requires further work to examine how different interaction
designs influence response quality and efficiency.

We suggest future work to understand the effectiveness of hybrid
systems in a more natural interactive multi-round conversation
setting, using more realistic tasks, and further understand the in-
fluence of the number of suggestions. Also, our experiments asked
crowd workers to answer questions in a batch mode using hybrid
systems. This suggests future work may explore if we can address
similar applications (such as online customer services) using human
computation combining hybrid systems and crowdsourcing.

6.4 Conclusion
This paper presents a large-scale crowdsourcing user study evalu-
ating hybrid conversational systems that allow users to compose
messages based on AI chatbot suggestions. We have specifically
focused on using hybrid systems for supporting people to finish
knowledge-demanding question-answering tasks. First, we found
that hybrid systems primarily help users compose responses more
efficiently—occasionally, they also help improve response quality
slightly. Second, we illustrated the critical role of chatbot sugges-
tion’s characteristics in hybrid systems—we especially note that
hybrid systems need to provide high-quality chatbot suggestions to
ensure answer quality. Using hybrid systems with poor-performing
chatbots may face a quality-efficiency tradeoff. Third, we also iden-
tified a few optimal design choices for hybrid systems regarding
presetting the message box or not. Our study provided guidance
and suggestions to design and deploy hybrid chat systems in similar
scenarios effectively.
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