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ABSTRACT
Many search e�ectiveness evaluation measures penalize the im-
portance of results at lower ranks. �is is usually explained as
an a�empt to model users’ persistence when sequentially examin-
ing results—lower ranked results are less important because users
are less likely persistent enough to read them. �e persistence
parameters are usually set to cope with the target cohort and tasks.
But during a particular evaluation round, the same parameters are
applied to evaluate di�erent ranked lists. In contrast, we present
work that adapts the persistence factor according to the ranking
and relevance of the ranked lists being evaluated. �is is to model
that rational users change their browsing behavior according to the
search result page, e.g., users avoid wasting time (a low persistence
level) if the results look apparently o�-topic. Experimental results
show that this approach be�er �ts observed user behavior and
correlates with users’ ratings on their search performance.
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1 INTRODUCTION
Accurately measuring the e�ectiveness of a search system needs
to take into account not only the quality of retrieved results but
also the possible ways that users may interact with the results. For
example, many search e�ectiveness evaluation measures penalize
the contribution of relevant results at lower ranks. �is is because
users are more likely to view top-ranked results on a search result
page (SERP). Eye-tracking studies [30] observed less visual a�ention
of users on lower-ranked results. Search log analysis [15, 30] also
showed that higher-ranked results a�ract more clicks, although
they are not necessarily more relevant.

Recent evaluation measures interpret such discounting compo-
nents as models for users’ browsing behavior. As users go to deeper
ranks, they are less likely persistent enough to examine the results
[27, 35]. Manymeasures include parameters for the degree of persis-
tence. For example, discounted cumulated gain (DCG) [27] applies
a discount factor 1

logb (b+k−1)
to the kth result. A greater value of b

penalizes results at lower ranks by a smaller extent, which stands
for more persistent SERP browsing. Other examples include the
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Figure 1: �e probability of examining results at di�erent
ranks on SERPs with high, medium, and low “quality”. We
sort the SERPs by their DCG scores and divide them into �ve
bins. High,medium, and low quality SERPs refer to those in
the �rst, third, and ��h bins, respectively.

persistence parameter p in rank-biased precision (RBP) [35], the
half-life parameter h in time-biased gain (TBG) [40], and so on.

Previous work suggested to set these parameters according to
the target users and tasks [27, 35]. For example, Mo�at and Zobel
[35] used p = 0.95 and 0.8 for “patient” users, and 0.5 for “im-
patient” ones in RBP. When user behavioral data (such as click
logs) are available, one can tune these parameters according to the
observed search behavior [40, 45]. Users may also have di�erent
levels of persistence in di�erent scenarios (e.g., navigational and
information queries [7] and tasks with di�erent levels of complexity
[3]). Despite these variabilities, these parameters are usually pre-
determined before evaluation—predetermined values are applied
to evaluate di�erent SERPs. �is implicitly assumes that a user has
the same persistence on various SERPs, which con�icts with our
observations.

Figure 1 shows an example based on a laboratory user study’s
search log [29]. It plots users’ probability of examining results at
di�erent ranks on SERPs with high, medium, and low “quality”. We
determine the user examined a result if we observed an eye �xation
(captured by an eye-tracking device). Section 5 introduced details
of the dataset. Figure 1 shows that the users have similar browsing
pa�erns on the high and medium “quality” SERPs, but they are
less likely to examine results on the low “quality” SERPs. Here we
simply determine the quality of a SERP by their DCG scores. But
we examined and found similar pa�erns using other measures as
well. �is suggests that users may adapt their browsing pa�erns
according to the SERP (and particularly the quality of the SERP
in this example)—for example, if the results look apparently low
quality and o�-topic, searchers quickly abandon rather than keep
on examining more items.



Existing search e�ectiveness measures cannot explain such vari-
ability. For example, DCG and RBP’s discount factors only depend
on the rank of a result—following these models, SERPs with di�er-
ent “quality” should not vary in examination probability. Another
popular measure, expected reciprocal rank (ERR) [9], sets the dis-
count for a result adaptively according to the results at higher ranks.
But it assumes that a�er examining a relevant result, users are less
likely to continue to examine the next one due to the satisfaction of
their information needs. Following ERR’s model, searchers should
have a higher chance to examine lower-ranked results on the low
“quality” SERPs compared with on the high and medium “quality”
ones, because the low “quality” SERPs have fewer relevant results
at the top ranks—this is contradictory to our observations. Readers
may refer to Figure 2 (plots labeled with “static”) to the examination
probability of existing measures on SERPs with di�erent quality,
where none of the plots �ts with the observation in Figure 1.

In this paper, we adapt users’ persistence based on the relevance
and ranking of results on the SERPs (ranked lists) being evaluated
(such that the evaluation measures and their browsing models are
also adaptive to the SERPs). When evaluating di�erent ranked lists,
we compute di�erent persistence values adaptively according to
the results of the SERPs. Experimental results show that:

• Our approach helps existing evaluation measures, includ-
ing DCG, RBP, ERR, TBG, and U-measure [37], to be�er �t
with users’ search behavior, including both the observed
browsing behavior in an eye-tracking user study’s log, and
the clicking behavior in a commercial search engine’s log.

• With more accurate user models, our approach also helps
existing measures to be�er correlate with users’ ratings on
their search performance.

2 RELATEDWORK
Ever since DCG [27], many search e�ectiveness measures included
models for how users examine the ranked list (examination mod-
els). Our work is closely related to previous studies on this topic.
Chapelle et al. [9] categorized the examination models in search
e�ectiveness measures into position-based models (such as DCG
and RBP [35]) and cascade models (such as ERR [9] and expected
browsing utility [44]). We discuss both types of models and also a
third type—cost-based models, including time-biased gain (TBG)
[40] and U-measure [37]. Both measures consider users’ examina-
tion behavior as dependent on the cost of examining results, which
is usually measured by time spent or texts read by users. Another
example of cost-based models is the Twist measure [20]. Section 3
analyzed current search e�ective measures in a deeper detail.

Our work adjusts the browsing models of search e�ectiveness
measures according to the SERP being evaluated, which is closely
related to many previous studies. For example, Kra� and Lee [31]
introduced two stopping rules to the expected search length (ESL)
measure: the satiation rule assumes persistent examination until
enough relevant results have been found, while the disgust rule
assumes users would stop a�er examining too many irrelevant
results. de Vries, Kazai, and Lalmas [16] modeled that continuous
examination of low quality (non-relevant) content leads to aban-
donment. Dupret and Piwowarski [17] modeled the chances of
abandonment in click models based on both the rank of the result

and its distance to the last clicked results. E�ectiveness measures
using cascade browsing models (such as ERR [10] and EBU [44])
all believe that examining a relevant result reduces the chances
to examine the follow-up results. �e INSQ family of measures
[3, 33, 34] adapt the stopping probability based on user expectation
and the current unmet information needs. Ferrante, Ferro, and
Maistro [19] modeled users’ stopping criteria based on the whole
history of visited documents.

However, our work also di�ers from previous adaptive evalu-
ation measures from two aspects. First, previous measures (such
as ESL, ERR, UBM, INSQ and so on) only adapt browsing models
based on the examined search results, while our method further
adjusts the overall persistence level of users based on the whole
SERP. �is helps to model many observed search behavior, espe-
cially user abandonment when browsing a low-quality SERP (as
shown in Figure 1). Second, our method learns adaptive models
from observed user behavioral data (such as clicks or eye �xations)
rather than relying on any particular assumptions on how brows-
ing behaviors are adapted. Section 4.4 discusses the di�erences
between our method and previous measures in be�er detail.

�e way we train parameters for our adaptive persistence model
is also similar to much previous work that calibrates parameters
of search e�ectiveness measures based on click log or other user
behavior data [7, 40, 45]. Another approach to help search e�ec-
tiveness measures to be�er �t with users is the click model-based
metrics [14]. In contrast to these work, our approach is di�erent in
that, 1) we model the adaptiveness of the browsing behavior, and
2) we focus on the persistence parameters in evaluation measures.

3 EXISTING BROWSING MODELS
Most current search e�ectiveness measures, either implicitly or
explicitly, included a browsing model for how users interact with a
ranked list of results [5]. �is section reviews some typical models
and their persistence factors.

When discussing a measure M , we focus on PM (k ), the proba-
bility of examining the kth result, as determined byM’s browsing
model. Here to examine a result means to look at its snippet on the
SERP and to click on its link and read details if the user believes it
is worthwhile. We use the following notations: rk is the relevance
grade for the kth result, and bk is the binary version (bk = 1 if
relevant, otherwise 0); rmax is the highest relevance grade.

3.1 Position-based Models
Position-based models determine the probability to examine a result
only based on its position (rank) on the SERP. Discounted cumulated
gain (DCG) [27] and rank-biased precision (RBP) [35] are typical
examples of position-based models.

A popular version of DCG [4] applies a discounting factor 1
logb (b+k−1)

to the kth result in the ranked list, as in Equation 1. Most studies
set b = 2, and in such a case the discount is 1

log2 (k+1)
. DCG did not

introduce any explicit model for how users browse the list of results,
but we can consider the discounting factor as examination probabil-
ity (as its value ranges from 0 to 1 when b > 1). b is the persistence
parameter in DCG. A smaller value of b penalizes lower-ranked



results by a greater extent.

DCG =
n∑

k=1

2rk − 1
logb (b + k − 1)

, PDCG (k ) =
1

logb (b + k − 1)
(1)

RBP [35] explicitly introduced a browsing model. It assumes that
users examine results on the SERP sequentially from top to bo�om.
Users always examine the �rst result. A�er examining each result,
users have the chance p to examine the next one, and 1 − p to stop.
Following this model, users have the probability pk−1 to examine
the kth result, as in Equation 2. p controls users’ persistence in
browsing. A smaller p yields a greater discount e�ect.

RBP = (1 − p) ·
n∑

k=1
bk · p

k−1 , PRBP (k ) = p
k−1 (2)

In Equation 2, bk is the gain of the kth result, which was set to a
binary function in the original RBPmeasure [35]. In our experiment,
we set bk = 2rk − 1 to consider graded relevance. �is improves the
measure’s correlation with users’ ratings on search performance.

3.2 Cascade Models
Cascade models in search e�ectiveness measures were motivated by
the cascade click models [10, 15]. �ey model the chances of exam-
ining a result as dependent on previously examined results. More
speci�cally, all existing cascade models [9, 44] believe that a�er
examining a relevant result, users are more likely to stop browsing
due to the satisfaction of their information needs, compared with
the case of examining a non-relevant result.

Expected reciprocal rank (ERR) [9] uses a typical cascade model.
ERR’s browsing model is similar to RBP, but it models that a�er
examining the kth result, users have the probability sk =

2rk −1
2rmax

to stop browsing due to the satisfaction of their information need.
�e chance of continuing to examine the next result is 1−sk , which
depends on the relevance of the examined result. Results with a
higher level of relevance are more likely to satisfy users (a greater
sk ), and thus penalize follow-up results by a greater extent.

�e most popular form of ERR does not include a persistence
factor, but Chapelle et al. [9] introduced an extended version of
ERR that takes into account a similar factor: users stop examining
(abandon) due to dissatisfaction. Equation 3 describes this variant1.
γ is the chance to continue, and 1−γ is the chance to abandon a�er
examining a result. To examine the kth result, users should have
neither stopped due to satisfaction nor abandoned at higher ranks.
We consider γ as the persistence parameter in ERR. A smaller value
of γ penalizes lower-ranked results by a greater extent.

ERR =
n∑

k=1

1
k
· sk · γ

k−1 ·
k−1∏
m=1

(1 − sm ) (3)

PERR (k ) = γ
k−1 ·

k−1∏
m=1

(1 − sm )

1 Chapelle et al. [9] did not include 1/k into this variant; we include 1/k in Equation
3 because this yields a be�er correlation with user experience ratings in our dataset.

3.3 Cost-based Models
Cost-based models discount a result by the expected cost spent by
the users. �e cost is usually measured in terms of time [40] or the
length of examined texts [37]. �ese models penalize a result by a
greater extent if the user has spent more e�ort when examining the
result. Time-biased gain (TBG) [40] and U-measure [37] are typical
examples of cost-based models.

TBG [40] penalizes a result based on the expected time spent
to arrive at the result (before examining the result). �e longer it
takes to reach a result, the less likely users are persistent enough
to examine it. Equation 4 computes TBG. дk is the gain of the kth
result. tk is the expected time spent before examining the kth result.
We can consider h as a persistence parameter. A greater h penalizes
lower-ranked results by a smaller extent.

TBG =
n∑

k=1
дk · e

−tk ·
log 2
h , PTBG (k ) = e−tk ·

log 2
h (4)

U-measure [37] discounts a result based on the total length of
texts users need to read to �nish examining the result (including the
texts for both the result itself and those at higher ranks). �e more
texts it takes to read to �nish examining a result, the less likely
users are persistent enough to examine it. Equation 5 computes
U-measure. lk is the cumulative length of examined texts starting
from the �rst result to the kth result (inclusive). дk is the gain of
the kth result. We consider L as a persistence parameter. A greater
L penalizes lower ranked results by a smaller extent.

U =
n∑

k=1
дk ·max(0, 1 − lk

L
) , PU (k ) = max(0, 1 − lk

L
) (5)

4 ADAPTIVE PERSISTENCE MODELS
4.1 Adaptive Persistence
As the last section summarized, many existing measures included
parameters for users’ persistence in SERP browsing, such as b in
DCG, p in RBP, γ in ERR, h in TBG, and L in U-measure. Most
existing methods use the same parameter to evaluate di�erent
SERPs during an experiment. In contrast, we set these parameters
adaptively according to the ranking and relevance of results on
the SERPs being evaluated. �is is to model that users may have
di�erent persistence and browsing behavior on various SERPs.

Let s be a persistence parameter (e.g., s can be b in DCG, p in
RBP, and etc.). We model s as a linear model based on the relevance
of results at di�erent ranks as in Equation 6: w0 is a �xed term;wi j
is the weight for “the ith result has relevance grade j”; [ri = j] is
a binary variable that takes the value 1 if ri = j (the ith result has
relevance grade j), otherwise it is 0.

s = w0 +
n∑
i=1

rmax∑
j=0

wi j · [ri = j] (6)

When evaluating a SERP, we �rst compute s according to the
results on the SERP and the parametersw0 andwi j . �en, we apply
the calculated SERP-dependent persistence value s to the e�ective-
ness measure to evaluate the SERP. Di�erent SERPs may yield di�er-
ent persistence. �erefore, measures using such a SERP-dependent
persistence are also adapted to the SERPs being evaluated. Note
that s is only meant to be a computational model of persistence—we



do not intend to suggest that users will �rst scan all results on a
SERP and then determine a persistence level for browsing.

�e full model in Equation 6 has n · rmax + n + 1 parameters in
total. For a regular SERP design (10 results per page) and an evalu-
ation protocol using �ve levels of relevance, s has 51 parameters.
We can reduce the number of parameters by considering only a
few top-ranked results (assuming that top-ranked results are more
important for users’ persistence). Another option is to consider
only binary relevance rather than all relevance levels—for each rank
k , s only includes two parameters for [rk = 0] and [rk > 0]. �ese
reduced models may help when we only have limited training data.
If we only include a �xed termw0, s is identical to the persistence
parameters in existing measures.

In this paper, we model user’s persistence (s) as only dependent
on the ranking and relevance of results on a SERP.�is simpli�es the
problem. Here we do not intend to suggest users’ browsing behavior
and persistence are only dependent on these factors. But such a
model requires nothing more than the ranked list and relevance
labels as input when evaluating a SERP. �is makes it applicable to
the Cran�eld-style automatic evaluation approaches. Of course, we
still need observed user interaction data to train parameters of s
(w0 andwi j ). But once the model has been trained, it can be applied
to any unseen ranked lists as long as we have relevance judgments.

4.2 Parameter Estimation
4.2.1 Using Eye Tracking Data. A straightforward option for

parameter estimation is to �t with observed browsing behavior.
For example, when eye-tracking data is available, we can learn
the parameters of s by maximizing the likelihood of the observed
eye �xations on the SERP. Eye �xation refers to users’ stably gaze
at an area of the screen, which is widely used as a surrogate for
users a�ention [30]. Many previous studies equate observing an
eye �xation on a result’s area to that the user examined the result.

Let vk be a binary variable for whether or not we observed the
user’s eye �xation on the kth result. We use Vk for the chances of
observing users’ eye �xation on the kth result, as in Equation 7. nv
is a normalization factor between PM (k ) (examination probability)
and Vk (the chances of observing an eye �xation). �is is to take
into account the fact that we do not always observe users’ eye
�xations on the �rst result, but most examination models assume
that users always view the �rst result on the SERP. We estimate nv
as the chances to observe eye �xations on the top ranked result.

Vk = nv · PM (k ) (7)

Equation 8 computes the log likelihood (LL) of the observed
eye �xations for a single SERP. �e LL for multiple SERPs simply
sums up the LLs for each SERP. For simplicity, we use the LL for
an individual SERP in all following discussions.

LLview =
n∑

k=1
log(Vkvk + (1 −Vk ) (1 −vk ))

=

n∑
k=1

log((2vk − 1)Vk −vk + 1)
(8)

Equation 8 is straightforward to maximize using approaches
such as gradient ascent. Equation 9 computes the gradient. One

can further derive ∂Pk
∂w for a speci�c measure according to its ex-

amination model. For example, Equation 10 derives the gradient
for RBP. We do not further derive the gradients for other measures
due to limited space.

∂LLview
∂w

=

n∑
k=1

(2vk − 1) · nv
(2vk − 1)Vk −vk + 1

·
∂PM (k )

∂w
(9)

PRBP (k )
∂w0

= (k − 1)pk−2 , PRBP (k )
∂wi j

= (k − 1)pk−2 · [ri = j] (10)

4.2.2 Using Click Log. Collecting eye-tracking data is expensive,
which makes it di�cult to scale up. �erefore, a more practical
option is to estimate the parameters using click log.

Let ak be the “a�ractiveness” of the kth result (the chances of
clicking on the result a�er examining its snippet). We can predict
the likelihood of clicking on the kth result based on the examination
model, as in Equation 11. �is is o�en referred to as examination
hypothesis [15, 17] in click models—click depends on both exam-
ination and the a�ractiveness of the result. Ck is the chances of
clicking on the kth result, and ck is the binary event that whether
or not we observed any clicks on the kth result.

Ck = ak · PM (k ) (11)
Equation 12 computes the log likelihood of the observed clicks

for an individual SERP. Similarly, Equation 13 derives the gradient,
which is similar to Equation 9.

LLclick =
n∑

k=1
log((2ck − 1)Ck − ck + 1) (12)

∂LLclick
∂w

=

n∑
k=1

(2ck − 1) · ak
(2ck − 1)Ck − ck + 1

·
∂PM (k )

∂w
(13)

Note that although Equation 11 looks similar to click models, our
purpose here is not to achieve be�er click prediction or to compete
with existing click models [10, 12, 17, 21]. Our purpose is only to
set the parameters’ values (w0 andwi j ) appropriately through the
process of click prediction. Also, the se�ing is also very di�erent
from those for training click models—our training process requires
both clicks and relevance labels as input, while click models can be
trained without relevance labels (and one of their primary purposes
is to predict results’ relevance labels).

We set ak (a�ractiveness) only based on result relevance, i.e.,
ak = a(rk ). Based on the assumption that users always view the
�rst result on a SERP, we estimate a(r ) as the click-through rate of
results with the relevance grade r at the top rank.

4.3 Example
To be�er illustrate the proposed approach, we present an example
of applying the adaptive persistence model to RBP. In the following
example, persistence is modeled by considering graded relevance
(0, 1, or 2) and the top 5 results. �e following table shows the
parameters’ values estimated from a dataset.

We consider three example ranked lists (SERPs) L1, L2, and L3.
�eir relevance vectors are as follows:

L1 = [0, 0, 0, 0, 0]
L2 = [1, 1, 1, 1, 1]
L3 = [2, 2, 2, 2, 2]



w0 = 0.544
wi j j = 0 j = 1 j = 2
i = 1 0.047 0.088 0.059
i = 2 0.049 0.084 0.061
i = 3 0.048 0.096 0.050
i = 4 0.042 0.054 0.098
i = 5 0.052 0.072 0.070

�e evaluation procedure is similar to those using regular RBP,
except that the persistence p in RBP vary for di�erent SERPs. When
evaluating L1, we �rst compute persistence based on L1’s relevance
vector—p = w0 + w10 + w20 + w30 + w40 + w50 = 0.782. �us
we apply p = 0.782 to evaluate L1. Similarly, for L2, we have
p = w0 + w11 + w21 + w31 + w41 + w51 = 0.938. For L3, the
persistence is p = w0 +w12 +w22 +w32 +w42 +w52 = 0.882.

We apply adaptive persistence to the browsingmodels in existing
measures and call them adaptive persistence browsing models and
measures. Adaptive persistence browsing models and measures
are variants for existing browsing models and measures where
the persistence parameters are replaced with adaptive persistence,
which varies adaptively according to the SERPs being evaluated.

4.4 Relation to Existing Measures
�e measures we examined all discount the contribution of results
at lower ranks. But the discount depends on di�erent factors in
various measures.

�e discount components in position-based models are SERP
independent. Position-based models determine the discount on the
kth result only based on its rank k . For di�erent SERPs, they set
the same discount on the kth result without considering the results
on the SERPs, which is oversimpli�ed.

Cascade models and cost-based models determine the discount
based on the results at higher ranks (e.g., the chances of stopping
a�er examining results at higher ranks in the case of ERR, and the
time to examine results at higher ranks in the case TBG). �ere-
fore, their discount components are SERP dependent—for di�erent
SERPs, the discount for the kth result can be di�erent depending
on the results at higher ranks. But the dependency is local—they
only take into account results at higher ranks than k .

�e adaptive persistence model introduces a global dependency
between SERP results and the browsing models. �e discount fac-
tor depends on all the results on the SERP because we compute
persistence based on all the results’ relevance and their rankings.
Adaptive persistence does not con�ict with existing models such
as cascade models and cost-based models but complements them.
A�er applying adaptive persistence, all the three types of models
are SERP dependent. �e cascade models and position-based mod-
els, with the help of adaptive persistence, discount the contribution
of a result based on both previously examined results (local depen-
dency) and all the results on the SERP (global dependency). As later
sections examined, such a global dependency between SERP results
and the browsing models is helpful for evaluation measures.

Again, we note that our method is only a computational model of
persistence—we assume that the persistence level of a user who is
going to browse a SERP can somehow be inferred from the quality

of the SERP. We leave the veri�cation of this assumption and the ex-
planation of the detailed mechanism for future work. Nevertheless,
applying our method does not introduce additional risks because
the parameters will be learned from user behavioral data—if users’
persistence levels do not vary by SERPs, the learned model should
come to similar persistence values for di�erent SERPs.

5 DATASETS
We use two di�erent datasets in our experiments:

• J&A2. �is dataset was released by Jiang and Allan [28]
based on a user study’s search log [29]. It provides eye
tracking data and users’ ratings on their search perfor-
mance in a session. We use the eye tracking data to verify
how well the adaptive persistence models �t with users’
browsing behavior. Also, we also examine how well search
e�ectiveness measures applying the adaptive persistence
models correlate with users’ ratings on their search perfor-
mance. Figure 1 was plo�ed based on this dataset.

• Yandex. �is dataset is a subset of the Yandex relevance
prediction challenge dataset3. �e original purpose of the
dataset was to evaluate click models regarding predicting
results’ binary relevance labels. We use this dataset to ver-
ify whether or not the adaptive persistence models be�er
�t with observed clicking behavior compared with exist-
ing search e�ectiveness measures. Training the proposed
adaptive persistence models requires both click and rele-
vance labels. �us we only select a subset of the dataset
where each SERP was fully judged. 1,029,427 SERPs from
1,027,613 di�erent sessions were selected in total.

Note that both datasets have some limitations. However, to the
best of our knowledge, they are the most suitable open, accessi-
ble options for our purpose. �e J&A dataset was collected in a
laboratory user study se�ing. It is small in size (only 388 SERPs
from 80 sessions). Also, the adopted search tasks came from the
TREC session track [6], which included relatively more complex
information needs than regular web search. In contrast, the Yandex
dataset is more realistic because it comes from real commercial
web search engines and is large enough for training robust models.
But it does not o�er eye tracking data and user experience ratings.
Also, the log has been anonymized, which makes it impossible to
assess the underlying search scenarios. Later sections discussed
the implications of these limitations to the results. �e following
table shows some basic statistics of the two datasets.

J&A Yandex
# sessions 80 1,027,613
# SERPs 388 1,029,427
# results per SERP 9 10
Relevance levels 0–2 binary
Click Yes Yes
Eye tracking Yes No
User experience ratings Yes No
Experiment se�ing Lab Web search engine
Search system Google Yandex
Search task Complex Unknown

2 h�ps://github.com/jiepujiang/ir metrics
3 h�ps://academy.yandex.ru/events/data analysis/relpred2011/

https://github.com/jiepujiang/ir_metrics
https://academy.yandex.ru/events/data_analysis/relpred2011/


6 EXPERIMENTS
6.1 Implementation
In the original TBG measure, Smucker and Clarke [40] estimated
the time to examine a result based on the length of the document
because the two correlate with each other in their dataset [41].
However, the Yandex dataset does not include document length.
Besides, we did not �nd a signi�cant correlation between the two in
the J&A dataset (r = 0.02), but we observed a signi�cant correlation
between result relevance and dwell time (r = 0.27, p < 0.001).
Similarly, in the Yandex dataset, users also spent signi�cantly longer
dwell time on relevant results compared with non-relevant ones
(1104 vs. 774, p < 0.001). �erefore, we estimate the expected time
to examine a result based on result relevance.

Equation 14 computes t (r ), the expected time to examine a result
with the relevance r . It takes into account the time to read a result
snippet (tsnippet), and the possible time spent on the result document
if the user clicks on it. tsnippet is assumed a constant for all results.
Pclick (r ) is the chances of clicking on a result with relevance grade
r , and tclick (r ) is the time spent on a result document a�er clicking.

t (r ) = tsnippet + Pclick (r ) · tclick (r ) (14)
�e following table shows the time estimation in the two datasets

(the Yandex dataset normalized time using an unknown unit). We
estimate tsnippet based on the rank of the �rst clicked result on a
SERP and the time spent from submi�ing the query to the �rst
click [40]. tclick (r ) is estimated as the time spent from clicking
on the result to the next recorded action in the search log (either
submi�ing a query or clicking on a result). When computing TBG,
we compute tk based on t (r ), i.e., tk =

∑k−1
i=1 t (ri ) (note that tk

excludes the time to examine the kth result). We set дk = 2rk − 1
in TBG, and we ignore the optional normalization component.

Time estimation in the J&A dataset.
tsummary Pclick (r ) tclick (r ) t (r )

r = 0 3.6 s 0.26 17.2 s 8.1 s
r = 1 3.6 s 0.50 30.7 s 19.0 s
r = 2 3.6 s 0.54 52.2 s 31.8 s

Time estimation in the Yandex dataset.
tsummary Pclick (r ) tclick (r ) t (r )

r = 0 74 0.51 774 471
r = 1 74 0.63 1104 765

Similarly, we compute a time-based variant for U-measure due
to the lack of document length information in the Yandex dataset.
Equation 15 computes this variant. Here tk+1 stands for the ex-
pected total time to reach the (k + 1)th result (to be consistent with
the tk in TBG), which is computationally equivalent to the expected
total time spent until the user �nishes examining the kth result.
�e parameter T is similar to L in the original U-measure, except
that it is measured in time. T is the persistence parameter in this
variant. We set д(k ) = 2rk −1

2rmax as Sakai [37] did, and we also ignore
the optional normalization factor in U-measure.

U =
n∑

k=1
дk ·max(0, 1 − tk+1

T
) (15)

Note that for all the �ve measures we examined, their persistence
parameters’ values should stay within certain “reasonable” range,

e.g., b > 1 in the case of DCG. But Equation 6 cannot guarantee
this property. �us, when computing persistence, we normalize
the computed value to the closest valid value if it is not within the
reasonable range. For DCG, we set b = 1.01 if the computed value
≤ 1. For RBP, we set p = 0 if the computed p < 0, and set p = 1 if
the computed p > 1. For TBG and U-measure, we set h and T to 1
if the computed values < 1. For ERR, we set γ = 0 if the computed
γ < 0. One exception is that we allow γ > 1 in ERR. �is con�icts
with the original notation of γ (the probability of continuing to
examine the next result when the user was not satis�ed), but yields
be�er results. Section 6.3 discussed this issue in detail.

6.2 Experiment Condition
We apply adaptive persistence to the �ve measures’ browsing mod-
els and compare with current ones where the persistence param-
eters are constant when evaluating di�erent SERPs. We refer to
the later static persistence models or measures. �e purpose of the
experiments is to examine:

• RQ1: how well the adaptive persistence browsing models
explain observed browsing behavior compared with the
static persistence ones (Section 6.3)

• RQ2: how well the adaptive persistence browsing models
�t with observed clicking behavior compared with the
static persistence ones (Section 6.4)

• RQ3: how well search e�ectiveness measures applying
the adaptive persistence models correlate with users’ rat-
ings on their search performance compared with the static
persistence ones (Section 6.5)

More speci�cally, we compare with two baselines:
• Baseline 1 is the measures using “default” static persis-

tence parameters. We set b = 2 in DCG, and γ = 1 in
ERR. We set p = 0.8 and 0.5 in RBP, which were usually
adopted for “patient” and “impatient” users [5, 35]. We
set h to the “half life” of the users when they examine a
SERP [40]. Sakai [37] set L to the largest maximal trail text
length across all possible search sessions in the original
U-measure. Similarly, we setT to the longest examine time
for a SERP.

• Baseline 2 is the browsing models using s = w0 (only
a �xed term). It is essentially the same as using static
persistence parameters, but the values are trained using
observed eye �xations or clicks.

6.3 Fitting Observed Browsing Behavior
To study RQ1, we �rst examine how well Vk = nv · PM (k ) in-
terpret the observed eye �xations in the J&A dataset. We use a
cross-validation se�ing in experiments. We produce ten random
partitions of the dataset. On each partition, we perform a 10-fold
cross validation, using nine folds for training and one fold for test-
ing. �is produces results on 100 test folds in total. We report the
mean negative log likelihood on these 100 test folds (smaller values
are be�er).

Table 1 reports the results. �e adaptive persistence models
were trained using observed eye �xations. “topk” refers to adap-
tive persistence models considering only the top k results on the
SERP. “Grade Relevance” and “Binary Relevance” stand for whether



Figure 2: Predicted examination probability at di�erent ranks on SERPs with high,medium, and low quality. (static) refers to
measures using constant persistence parameter values on all SERPs. (adaptive, click) and (adaptive, view) refer to the adaptive
measures trained using observed clicks and eye �xations, respectively.

Table 1: Fixed vs. adaptive persistence browsing models in predicting eye �xations, using the J&A dataset (negative log likeli-
hood, smaller values are better).

Baselines Adaptive Persistence Measures
(Graded Relevance)

Adaptive Persistence Measures
(Binary Relevance)

1 2 top3 top5 top7 top9 top3 top5 top7 top9
DCG 247.5 223.71 221.412 222.212 222.81 222.61 222.212 222.112 222.91 222.61
RBP, p = 0.8 252.7 224.31 222.412 223.61 223.01 223.61 223.512 223.91 224.51 224.61
RBP, p = 0.5 514.6 224.31 222.412 223.61 223.01 223.61 223.512 223.91 224.51 224.61
ERR 494.5 495.11 338.612 288.712 299.912 326.212 356.312 333.712 337.212 341.212
TBG 269.7 231.71 224.212 221.912 222.812 221.712 223.912 221.412 221.412 220.812

U-measure 235.4 235.3 228.912 227.912 226.912 232.5 228.312 226.612 226.612 223.612
1 and 2 indicate statistical signi�cant di�erences at least at 0.05 level compared with baseline 1 and 2 by two-tail paired t -test.

or not the adaptive persistence models consider graded relevance.
We compare with Baseline 1 and 2. Baseline 1 is a weak baseline
here because the default persistence values are not trained to max-
imize the chances of observing the eye �xations. Baseline 2 is a
solid baseline, which helps examine whether the SERP-dependent
adaptive persistence outperforms trained SERP-independent static
persistence.

Table 1 shows that for all the �ve measures’ browsing models,
using adaptive persistence consistently interprets observed eye
�xations be�er than using the static baselines in the J&A dataset.
�is veri�es that the proposed approach be�er �ts with users’
browsing behavior compared with the existing ones. Also, we

noticed that the magnitudes of improvements seem larger for ERR,
TBG, and U-measure compared with those for DCG and RBP.

Table 1 also shows that using more results and graded relevance
in the adaptive persistence models do not necessarily have bet-
ter performance in the J&A dataset. One possible reason is that
considering many results and graded relevance levels increases
the number of parameters, which requires larger datasets to train
robust models. �e reduced models are reasonable and e�ective
alternatives to the full model in the case of limited training data.

To further understand why the adaptive persistence models per-
form be�er than the static ones, Figure 2 plots the estimated exami-
nation probabilities at di�erent ranks on SERPs with high, medium,



Table 2: Static vs. adaptive persistence browsing models in
click prediction, using the Yandex dataset (×105 negative log
likelihood, smaller is better).

Baselines Adaptive Persistence
1 2 top3 top5 top10

DCG 3.660 2.6401 2.54812 2.54512 2.54712
RBP, p = 0.8 3.651 2.8191 2.73812 2.73312 2.72812
RBP, p = 0.5 2.864 2.8191 2.73812 2.73312 2.72812
ERR 3.264 3.0651 2.79912 2.79812 2.92712
TBG 3.214 2.8661 2.69212 2.68112 2.67912
U-measure 4.319 4.2481 4.16712 3.98712 3.87412
1 and 2 indicate statistical signi�cant di�erences at least at 0.05 level

compared with baseline 1 and 2, respectively.

and low “quality”. Here the se�ing is the same as that in Figure
1—we sort the SERPs by their DCG scores and refer to those in
the �rst, third, and ��h bins as high, medium, and low “quality”
SERPs. �is is arbitrary, but we examined and found that using
other measures would also produce similar results to Figure 2.

�e �rst row shows the predicted examination probabilities by
existing browsing models (using static persistence). None of the
�ve models explain the di�erences in observed examination prob-
abilities on SERPs with di�erent “quality” (as in Figure 1). As we
discussed, DCG and RBP have the same examination probabilities
on various SERPs. In contrast, ERR assigns higher examination
probability to lower-ranked results on the low “quality” SERPs com-
pared with on the high and medium “quality” ones. �e variants
of TBG and U-measure are similar to ERR because relevant results
have greater costs (require a longer time to examine) and discount
lower-ranked results by a greater extent. �is con�icts with the
observed examination probabilities in Figure 1, where users are less
likely to examine lower-ranked results on the low “quality” SERPs.

�e second and the third rows show examination probabilities
for browsing models with adaptive persistence trained using click
and eye �xation data. All these �gures be�er interpret the di�er-
ences in observed examination probabilities on SERPs with di�erent
“quality”. �e adaptive persistence models were learned to correctly
reduce the examination probabilities on the low “quality” SERPs.
�is further con�rms that, as we expected, by modeling persistence
based on the results on the SERP, the adaptive persistence mod-
els can help existing browsing models be�er �t with real users’
browsing behavior. �is also explains why the magnitudes of im-
provements are larger for ERR, TBG, and U-measure in the J&A
dataset, because their browsing models diverge from the observed
examination probabilities by greater extents compared with DCG
and RBP in the J&A dataset.

Note that allowing γ > 1 is the key to make the technique work
for ERR. As the �rst row of Figure 2 shows, the default sk = 2rk −1

2rmax

sets a radical discount to the examination probability, which may
not work well in scenarios other than navigational search. In such
a case, allowing γ > 1 helps the model to be�er �t with the actual
browsing behavior.

6.4 Fitting Observed Clicking Behavior
To study RQ2, we examine how well Ck = ak · PM (k ) interpret
the observed clicks. We use a similar cross-validation se�ing as
the last section. A limitation of the previous section is that the

experiments are based on a small dataset (J&A), where the included
search tasks may not be representative of typical web searches.
�us, we examine RQ2 using both the J&A and the Yandex datasets.
Note that the purpose of the experiment is not to achieve be�er
click prediction or compete with existing click models. Our goal is
to evaluate the browsing models in search e�ectiveness measures.
Since we use Ck = ak · PM (k ) to predict clicks for all browsing
models, we expect the performance of click prediction can indicate
the e�ectiveness of the browsing models.

Table 2 reports the click prediction performance of the browsing
models in the Yandex dataset. Similar to the �ndings in the last sec-
tion, Table 2 shows that browsing models with adaptive persistence
explain users’ clicking behavior signi�cantly be�er than the two
baselines. �is further veri�es the e�ectiveness of our approach
in a larger, more representative, and robust dataset. �is suggests
that the variability of browsing behavior to SERPs with di�erent
quality is not restricted to the J&A dataset, but is generalizable to
regular web search scenario as well.

Table 3 further reports the click prediction performance of the
models in the J&A dataset. �e �ndings are similar to Table 2 and
that for predicting eye �xations. �e adaptive persistence models
have signi�cantly be�er click prediction performance than both
baseline 1 and baseline 2 in most cases except RBP. Also, reduced
models help maintain high e�ectiveness in this small dataset.

Note that here we do not hope to suggest �ndings such as “DCG
has a be�er browsing model than ERR”. �is is because the results
only suggest the overall e�ectiveness of the models in predicting
click behavior at all ranks. Practically, a be�er �t with users’ be-
haviors at the top-ranked results may be more valuable due to the
importance of top-ranked results.

6.5 Correlating with Users’ Ratings
A major goal of search e�ectiveness measures is to serve as indi-
cators for potential users’ experience a�er they interact with the
SERPs. With be�er browsing models, we expect the search e�ec-
tiveness measures can be�er model and correlate with users’ search
experience. �e J&A dataset o�ers users’ ratings to their search
performance in a session. A�er �nishing a search session, users
answered the question “how well do you think you performed in this
task” using a �ve-point Likert scale from very well (5) to very badly
(1).

To study RQ3, we examine the correlation between search ef-
fectiveness measures and users’ ratings in a session. Note that the
dataset only provides users’ ratings for a session as a whole, while
all the examined measures are for individual SERPs. �erefore,
when examining a measure, we compute the measure’s values on
di�erent SERPs for a session and use the mean value as an indicator
of the session’s quality. We examine how well the average value of
the measure for di�erent SERPs in a session correlate with user’s
rating for that session.

We generate 25 random partitions of the sessions and perform
a 4-fold cross-validation on each partition. We use three folds
(60 sessions’ SERPs) to train the adaptive persistence models, and
measure the correlation (Pearson’s r ) on the test fold (20 sessions).
�e se�ing is di�erent from previous sections because we noticed
that Pearson’s r becomes less stable for a small number of test



Table 3: Fixed vs. adaptive persistence browsing models in click prediction, using the J & A dataset (negative log likelihood,
smaller values are better).

Baselines Adaptive Persistence Measures
(Graded Relevance)

Adaptive Persistence Measures
(Binary Relevance)

1 2 top3 top5 top7 top9 top3 top5 top7 top9
DCG 173.6 171.61 171.01 170.712 170.412 171.31 171.11 170.312 170.91 171.31
RBP, p = 0.8 175.0 171.91 172.21 172.812 173.212 174.42 171.81 172.11 172.812 173.312
RBP, p = 0.5 258.1 171.91 172.21 172.812 173.212 174.412 171.81 172.11 172.812 173.312
ERR 269.6 265.01 214.312 194.912 205.512 215.112 223.312 215.012 217.612 224.312
TBG 183.1 175.21 173.512 170.812 177.7 174.01 172.712 170.112 170.212 170.412
U-measure 176.7 177.71 176.8 175.22 173.512 179.0 177.1 175.52 174.012 176.7

1 and 2 indicate statistical signi�cant di�erences at least at 0.05 level compared with baseline 1 and 2 by two-tail paired t -test.

Table 4: Comparison between baselines and adaptive persistence measures in correlating with users’ ratings on search perfor-
mance (mean values of Pearson’s r over 100 di�erent test folds; greater values are better).

Baselines Adaptive Persistence Measures
(Graded Relevance)

Adaptive Persistence Measures
(Binary Relevance)

1 2 top3 top5 top7 top9 top3 top5 top7 top9
DCG 0.381 0.3781 0.3822 0.39212 0.39612 0.39412 0.3842 0.39112 0.39212 0.39212
nDCG 0.340 0.3321 0.33712 0.34612 0.34812 0.3462 0.33612 0.3422 0.3432 0.3432
RBP, p = 0.8 0.393 0.3861 0.41112 0.392 0.36112 0.35412 0.41312 0.4022 0.4002 0.4012
RBP, p = 0.5 0.376 0.386 0.41112 0.392 0.3612 0.3542 0.41312 0.40212 0.40012 0.40112
ERR 0.364 0.3671 0.42012 0.44912 0.41512 0.38912 0.358 0.39112 0.376 0.38512
TBG 0.379 0.375 0.38712 0.40012 0.40912 0.41512 0.38712 0.39712 0.40112 0.40712
U-measure 0.365 0.365 0.362 0.37812 0.37212 0.362 0.35812 0.37712 0.37612 0.37312

1 and 2 indicate statistical signi�cant di�erences at least at 0.05 level compared with baseline 1 and 2 by two-tail paired t -test.

instances (if we use the same se�ing as previous sections, each
test fold includes only eight sessions). Table 4 reports the results,
where the adaptive persistence models are trained using clicks (this
stands for a more realistic choice compared with eye �xation). We
also apply the approach to normalized DCG (nDCG). �e process
of training the persistence parameters is the same as that for DCG.
However, when computing nDCG, the ideal DCG is computed using
the ideal ranked list’s persistence, which may be di�erent from that
for the ranked list being evaluated.

Table 4 shows that a�er applying adaptive persistence, all the
�ve search e�ectiveness measures achieve signi�cantly be�er cor-
relations with users’ ratings on their search performance compared
with both baseline 1 and baseline 2. �is con�rms the usefulness
of the proposed approach—with be�er user interaction models,
our approach helps existing search e�ectiveness measures be�er
correlate with users’ perceptions on their search performance.

In addition, we noticed that, although baseline 2 unsurprisingly
outperformed baseline 1 in interpreting observed user behavior, it
does not necessarily lead to be�er correlations with users’ ratings.
For DCG, nDCG, and RBP (p = 0.8), baseline 2 yields slightly weaker
correlations compared with baseline 1. �is suggests that it requires
further investigations on when and to what extents correlating with
user behavior helps measures to model user experience.

7 DISCUSSION AND CONCLUSION
Accurately measuring the e�ectiveness of search systems is a key
challenge to ensure consistent improvements of search quality—as
search systems are usually trained to optimize some search quality
indicators, they would fail if the quality indicators fail. However,
many search e�ectiveness measures do not correlate with actual

search quality well enough [2, 26, 38, 41–43]. �is makes many
search engine companies to rely on online evaluation techniques
such as user experience prediction [1, 11, 18, 22, 23, 32] and in-
terleaved experiments [8, 13, 24, 25, 36, 39] to determine whether
or not to deploy a new ranking algorithm. Despite these issues,
the Cran�eld-style evaluation and search e�ectiveness measures
are still important in IR evaluation and system design due to their
automatic nature, which makes them suitable for automatically
guiding system optimization.

�is paper proposed and examined adaptive persistence model,
a technique to improve many o�ine search e�ectiveness measures.
�is model deals with the issue of user behavior variability caused
by SERP results. It adapts the browsing models in existing search
e�ectiveness measures according to the SERPs being evaluated.
Experiments show our approach is fruitful and helpful, concerning
both ��ing observed user behavior and correlating with users’
ratings on their search experience. �e technique is also generic,
as it can be applied to di�erent search e�ectiveness measures as
long as they included such a persistence parameter. Our study also
covers all the main user models in search e�ectiveness measures,
including position-based, cascade, and cost-based ones.

A key di�erence between our work and current measures lies
in that we take into account a global dependency between users’
browsing behavior and the SERPs being evaluated. In contrast,
position-based models (such as DCG and RBP) are independent of
the SERPs. Cascade models (e.g., ERR) and cost-based models (e.g.,
TBG and U-measure) are also adaptive to the SERPs being evaluated,
but they only consider a local dependency—where the discount on
the kth result only depends on the previously exampled results
(results at higher ranks). As we showed, our approach does not



con�ict with existing measures but helps them be�er simulate user
behavior, and consequently be�er correlate with search quality.
�is indicates that it is necessary to take into account such a global
dependency in browsing models and search e�ectiveness measures.

It should be noted that, although motivated by the di�erences
in examination probabilities on SERPs with di�erent “quality”, our
approach is not restricted to the example we observed in the J&A
dataset. �e model does not rely on any speci�c assumptions about
how di�erent SERPs would di�er in examination probabilities. It
learns to adapt to such di�erences and thus can be generalized to
di�erent cases. As long as users’ browsing behavior exist variability
on various SERPs and such variability is related to the relevance
of results, our model has the chance to learn the dependency. As
the experimental results on the Yandex dataset show, our approach
also explains click behavior signi�cantly be�er in a very di�erent
dataset than the J&A dataset.

However, we also acknowledge the limitation of our work. First,
it remains unclear how to interpret the dependency between brows-
ing behavior and SERP results. A possible interpretation for the low
examination probabilities on the low “quality” SERPs is that users
quickly abandon to avoid wasting time. However, this requires
further veri�cation. It is also unclear whether other reasons exist.
Second, both the two datasets have certain limitations—the J&A
dataset is small, and the Yandex dataset is anonymized and uses
only binary relevance. �erefore, it requires experiments on other
datasets to fully examine the e�ectiveness of our approach.

Resources related to this study can be accessed online4.
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